Re: [情報] 情報數則
我覺得這樣比喻有點失準,應該說單純把人工智慧分成「強人工智慧」與「弱人工智慧」
● 弱人工智慧
專注於某項特定任務,舉例來說如果有個人工智慧能自動依照作戰環境來切換雷達的掃描模式、自動選擇濾波演算法,這樣就算弱人工智慧
而且「弱人工智慧」不一定能夠跟你交互,或是說你只能透過它專精的事情來達成交互
○ 如果把 F-14 的 WSO 用弱人工智慧來取代
那就相當於一個無口屬性的機娘自動幫你切換 APG-71 的掃描模式,切換電子對抗,但你並不能夠直接跟它對話,而是透過在雷達光點上點選或是按鈕,然後這位有點呆的 WSO 醬就會幫你處理好雷達跟武器,你只要開火就好
空戰中它會透過攝影機還有雷達警告接收器幫你看六點,被咬的時候就發出聲音提醒你,不過建議你問工程師可不可以換自訂語音
● 強人工智慧
或是說「通用人工智慧」則更全面,它不僅能夠理解「如何駕駛戰鬥機、如何空戰並取勝」,更重要的是它夠理解人類透過口語或是戰術鏈所下達的戰術命令,並調整自己的行為
如果美軍之前實驗的 X-62 VISTA 可以在預先輸入的飛行計畫內,依據戰術指令去改變行為,而且能夠以語音或其他方式回饋這些改變,或是說它能夠從模擬戰場環境去接收各種情報後靈活的應對,那就算「通用人工智慧」
把「弱人工智慧」想成「凰牙」,「通用人工智慧」想成「阿斯拉」就可以理解了,「凰牙」只能專注於開 CF,甚至寫死在拼圈速這點,但它就是可以做到超越人類
然而「阿斯拉」雖然一開始表現平平,但它可以逐漸發掘出更多可能性,不論是在賽道上還是被關在車庫裡賭氣想怎麼挖苦人
● 封鎖高階 GPUPU 跟 3nm 以下的 EDA 是兩個互補的招式
你缺乏高階 GPUPU 就無法在能源與經費預算可行的情況下搭建算力農場來訓練通用人工智慧模型,那在有時間與預算壓力下你能達到的效用就會縮減,而封鎖三奈米以下 EDA 則可以壓制對方 FGPA/ASIC 的性能跟迭代速度
以機械學習為例,通常用 Python 寫出可執行的程式後,如果要把速度提升跟最佳化,會考慮用更底層的 C 重寫一次運算與執行,來減少編譯層數跟延遲
這之間的差異就是:
⊙ Python --Interpreter-> Byte Code --VM-> Machine Code
⊙ C --Compiler-> Machine Code
類似的情況也會出現在高階訊號處理晶片,如果用傳統的 ADC/DSP/DAC 晶片來搭建訊號處理單元,那就相當於用一顆一顆獨立的 MOSFET 來完成整塊邏輯板,大小會十分驚人
https://i.imgur.com/9ENDtmF.png
這個用 MOSFET 來完成邏輯板的專案叫做 TraNOR,某種程度上的神經病(稱讚)
因此大部分的高集成度的高速晶片都是用 VHDL 來作驗證跟迭代,然後量產時依照需求在可靈活更新的 FPGA,與刪減多餘電路來提升能耗比的 ASIC 間取捨
這時在製程與電路設計的能力與技術瓶頸會嚴重影響訊號處理、運算能力的表現,就算你軟體模擬時寫的再好,但實際開始走向硬體,開始設計晶片時就會卡了
就像是雷達中必備的各類模組,包含了上面提到的 ADC/DSP/DAC 還有濾波 AAF、等化 EQ 這些,你是要各部份都能靈活調整又省電,還是模組卡上密密麻麻一堆 IC 又慢又熱,差距就出來了
● 要形容差距大概就是
可能五年後美軍的 M1A3 只有炮手跟駕駛,環境感知、索敵是靠名為美穗的 AI 在處理,因此炮手反而比較像是車長兼預備裝填手,在名為優花理的自動裝彈機罷工時手動選彈跟裝填
然後另外一邊中國是用習主席配音的大地勇士系統,而且也只能達成聯隊規模的地圖跟接敵狀態共享
※ 引述《LucidWorld (入曦)》之銘言:
: 其實也不知道怎麼說明,再不講得太深入又能夠很簡白地說
: 真的蠻難的,我就大概點到一些點,然後開頭直接下個結論吧
: 美國想阻止的是中國透過AI完成強人工智慧,或是通用型的AI
: 有點類似現在目前的ChapGPT進化的最終版
: 但如果要阻止中國完成區域性或是弱人工智慧已經不可能了
: 然後4090就沒辦法做正經的AI嗎?
: 只能說在軍武點上要實現的AI功能,其實大部分有11GB左右的顯卡就能完成
: 也就是像2080TI這樣的顯卡,就能完成很多現今軍武裝備的大躍進
: 這邊科普一下,我們現今說的AI其實是一個很大的範疇
: AI包含了機器學習(ML)、深度學習(DL)、強化學習(RL)等等
: 但往往現今在講的一些AI或是突破會是以深度學習較多
: 通常在做一個AI模型,如果是DL會有兩個階段
: 第一個階段稱之為訓練(Training)
: 第二個階段稱之為實現/推理(Inference)
: 第一個階段通常就會使用GPU進行模型的參數訓練
: 簡單來說就是透過大量的資料來得到一批好的參數
: 而第二階段就不一定要使用到GPU了
: 在實務面上在第二階段使用GPU會遇到一些瓶頸,例如體積、耗電量、等問題
: (當然如果在工廠內其實就沒差,機台就這麼大台)
: 但如果在一些軍武設備上,以上就是要考量的點,還要考量很多額外因素
: 所以往往會是自行客製化的板子來實現,大家可以想像就是客製化不外售的板子
: 或是可以參考特斯拉的作法,就是會客製化晶片/FPGA
: 那回過頭來說,對這些軍武大廠來說,麻煩的並不是訓練出一個模型
: 而是怎麼把模型很好的放在他們的軍武設備裡面,而且可以正常運作
: 因為這邊就牽扯到了很多模型部屬,然後要用底層的程式碼來撰寫神經網路這件事
: 那老美為什麼要禁中國取得這些伺服器等級的GPU呢?
: 因為這些GPU可以訓練出有自主能力的AI
: 大家就可以想像AlphaGO(當初下圍棋的AI)
: 在軍武點上就是以後的無人機變成是可以自主接敵
: 無人潛艦可以自行鎖敵規劃接戰流程
: 無人砲車/自主機器人等等等...
: 那現今的狀況呢?
: 單純的影像辨識、訊號辨識、雷達辨識在各大軍火商已經相當成熟了
: 甚至一些新的產品用的一些AI模型甚至也不是深度學習架構
: 舉一個這次烏俄戰爭中最明顯的美俄差距
: 為什麼美國像是隨時開圖一樣呢?這點大家仔細想想應該也不難理解
: NV除了被斷大型的伺服器GPU外,其實也限縮了很多嵌入式的GPU
--
在街道上橫行的亂象只是一個表象的病徵,表明了這個文明已經身患重病
它的公民(所有人都是)只知道歌頌著「權力」的神話
卻忘記了他們自身應擔負的責任
由這種公民所組成的國家是不可能國運長久的
【星艦戰將, Starship Troopers 】 羅伯特‧海萊恩 1959
--
推,譬喻淺顯易懂XD
不過現在通用人工智慧光是跑訓練出來的模型都
還要非常大的算力,要把他放到可移動裝置上,
我覺得五年內太樂觀了吧
戰鬥妖精雪風裡的雪風是強AI還是弱AI?
雪風那個太神棍了,絕對是強AI,但論運算速度還有資料獲取能力,最可怕的還是超級電腦群集裡的特殊戰電腦(STC)跟上面的特殊作戰隊 指揮部戰略電腦(SSC) 發生在菲雅利星的戰鬥並不是人類對抗迦姆,而是以 STC、SSC 為首的軍用超級電腦以人類當作棋子在跟迦姆對奕
很久前看的 忘了 不過能自己判斷戰場態勢
然後做出整套決策 那是強AI
如果是用網路傳送運算結果呢 強AI放雲端運算就好
類似現在chatGPT的用法
這樣你派太多台出擊時網路頻寬不夠用全部 lag 到死
就跟台北世貿辦展覽時的會場一樣......
突然看懂了,這比喻太好懂了
CV可以自己選嗎(x
呃...太專業了 專業到不知道該怎麼推
把活人的精神塞到數據風暴裡就好了
秒變有靈魂的AI
人類能做出攻殼車的話就很厲害啦
專業知識文中,又飄出一點點的宅味~~讚啦!!我喜歡這
風格。謝謝分享!!!
推
幹,你一說我腦袋裡就有畫面,白毛無口WSO醬好萌
推
有Cortana那種的就好
妙喻
雪風裡面還有說過預算都是電腦(AI)在審的
這是小說設定嗎?以為只是發現被外星人騙然後撤退
原來這麼黑的嗎
別說 B-503,她上一層的 STC 跟頂頭上司 SSC 可是很現實的,在拯救大部分 FAF 而犧牲某些人這點可是毫不遲疑 甚至情報軍團的隆伯特提出的滲透戰術,某種程度上都是 SSC 認為獲取情報的價值大於某些人類被迦姆轉化成果凍人才批准 當然最後 SSC 發現整個星球都是實驗場之後就掀桌(核彈炸廊道)了
舉手 請問百科中校到底是….
喔幹,這我可以。淺顯易懂。
以後上車第一件事:破解後台裝自己的主推語音包
我要裝諾艾爾團長,然後叫她唱歌給我聽
弱AI會把人類搞死(煌的試駕車手)
AI現在就是一個黑盒子,各家大廠大佬不明白為什麼
我只是把數據庫擴大,AI就會湧現一些能力出來
軍火商:不同CV要另外購買喔
俄軍在烏克蘭戰中一堆基層軍官陣亡,指揮體系破壞
,先前想過鵝兵乾脆改由車載AI指揮作戰,AI的代號
是尤里
樓上你說的那個總覺得有一種不妙的預感..
西住AI車長我可以 不過也想聽聽看AI琴魔開外掛
推。抓個bug:優理花→優花理
這算AI嘛?
推
戰鬥妖精雪風表示:
中間講 FPGA 乃至 ADC 設計思路的地方我給個箭頭,
請問哪裡來的根據說設計 FPGA-Based 的電路一定是使
用 Python 來進行事前模擬?基本上高階語言的 OOP l
anguage 的訊號模擬直接轉換成電路是近年才出來的東
西,如果是純數學驗證的話也不是 Python 先出現的吧
?
要給箭頭給成推了== 算了
然後還有,ASIC 的 ADC 設計也不完全是靠 FPGA 驗證
的,就我所知,類比電路設計更多的是跑 Cadence Or
Synopsys 本家的 Spice 或 Verilog HDL 然後就直接
做 tape out 測試了。要是可以的話關於軍用 ADC 設
計有異於各大專院校或豬屎屋的話,望原 Po 能給一些
Ref,感謝XD
比喻簡化太多我補上了,我的意思是高速晶片的迭代不是像搓電路板一樣 拿出 EDA/CAD 畫一畫,跑一下電磁干擾模擬還有設計規則檢查就可以直接打版,而是需要從軟體層面的模擬,到確定硬體層面、電氣特性都跟虛擬相符才能開光罩 而封鎖 3 奈米以下的 EDA 會讓中國沒辦法繼續集縮 FPGA/ASIC 的電晶體密度跟提升設計複雜度,進而影響效能
打仗還在聽著維尼的聲音作戰 好像有點噁心
被關在車庫裡賭氣想怎麼挖苦人 XD
看你們這幾篇感覺很恐怖 難怪美國全面圍堵中國
因為當初晶片也是DARPA重點投資的項目,他們非常清
楚晶片在軍事的價值
他講的驗證設計的部分應該指的是訊號處理 為了方便
驗證功能和升級很早就在用fpga而不是每個功能都是
開專屬dsp 然而fpga吞吐量有限 要提升效能最直接就
是微縮製程硬幹內部資源上去
這跟人工智慧到底有啥屁關係... 不用AI也可以做到
@fatcat0423 純訊號處理跑 ADC RTL 驗證更不可能直
接跑在 FPGA 上吧?光是要驗證 time delay 問題就會
需要直接在電腦上跑完整的 STA 模擬了,除非真的只
是要驗證很前期的邏輯功能才可能動到 FPGA,但就我
所知,很多類比 IC 的 Design flow 都會直接在 EDA
工具的的 RTL 及 STA 的驗證階段就一起將演算法驗證
掉了
而且一堆 RLC 電路功能 FPGA 根本沒辦法提供,Power
功耗驗證也是問題==
所以我才希望原 Po 可以稍微解釋一下讓我增長見識QQ
我看到原 Po 偷偷修內文了XD
鋼彈OO的軌道電梯跟VEDA不知道哪個會先出來
ic級的設計與功能驗證當然用EDA就好了啊 方便又好
用 我是猜他講的是系統級功能但卻跟單一ic功能混在
一起講 當然也有可能有什麼特殊的應用是像他講的那
樣 等他說明囉
我也看到了xd
所以我說那個機娘,甚麼時候可以買的到
推
推
有錯字, VHDL ,不是 VDHL 。
感謝,已經更新
※ 編輯: takahashikag (122.116.15.4 臺灣), 05/11/2023 17:08:3738
烏軍參謀總部正式宣布收復 盧甘斯克州的Karmazynivka,Myasozharivka,Nevske 頓內茨克州的Novosadove97
不明地點與時間的烏軍車隊受挫於俄軍砲擊,至少損失兩輛裝甲運兵車,包含芬蘭送的 XA-185首(被)殺,以及部分人員34
我這不就來了嗎? ***** 烏軍迄今已收復赫州逾90個民居點25
喬治亞軍團剪輯的烏軍步戰協同進攻(影片) 可以看到一些有趣的亮點 烏軍指出德國軍援的IRIS-T防空飛彈對於保衛基輔很有成果50
白俄軍人持續展現他們訓練有素的體能戰技 義大利軍援不明數量的M109L給烏克蘭25
英國的歐洲事務大臣表示,相信未來有機會提供西方坦克給烏克蘭 俄國今天又發射40枚飛彈和16架自殺無人機83
一位烏克蘭小女孩因俄軍飛彈襲擊而躲在桌下不出來,直到她爸爸拿恐龍玩偶給她才釋懷 (4/10拍的) 一位俄女要籌集資金買熱顯像儀給俄軍,因為她覺得可以讓他們保暖XD1
關於為什麼德國外交部、國防部為什麼會要求提高軍援預算,是因為 德國目前是紅綠燈跨黨派聯盟執政,各部會首長是不同黨掌管。 明年度編列的援烏預算是7億歐元,外交部長(綠黨)與國防部長(SPD)要求 財政部長(FDP)提高至22億歐元,大概是690億新台幣。 因為是內閣制,這些部長也都是國會議員。54
烏克蘭第10山地突擊旅清除一些躲在戰壕的俄軍 俄軍正在把民宅裡的洗衣機搬走26
五角大廈證實美軍已經援助烏克蘭冬季服裝,包含 50,000件連帽風衣 4,700件長褲 39,000頂毛帽
52
[閒聊] GPT-5 或許會是強AI新聞連結 大家應該都知道在 ACGN 裡面出現的 AI 幾乎都是強人工智慧。 就我所知只有質量效應有細分成VI(弱人工智慧)跟AI(強人工智慧) 挺有意思的是質量效應的桀斯(強人工智慧)一開始其實也是弱人工智慧。30
[問卦] 人工智慧犯錯,通常要告誰呢?是這樣啦!常常都會說未來人工智慧會取代人類現在很多工作。 那如果開自動駕駛車,搭載最新人工智慧,如果不小心出車禍了,責任在汽車對吧? 如果是取代藥師開藥,或是取代醫師看病、開刀,出錯了,責任也都在電腦對吧? 有沒有人工智慧犯錯,通常都要找誰來告求償的八卦啊? --4
[問卦] AI永遠無法超越人類,對吧?大家好啊,最近我一直在想這個問題,就是無論科技怎麼進步,我都覺得人工智慧不可能超過我們人類!有沒有同感的朋友呀?下面我就來聊聊我的想法,大家來講講你們的看法吧! 首先呢,就是人類的情感和創造力。我們有豐富的情感世界,能夠感受到各種情感的細微差異。而這點,機器是無法做到的。再說我們的創造力,是因為我們對這個世界有獨特的理解,這也是機器無法模仿的。 再來說說人工智慧的侷限性。雖然它能夠快速處理數據和運算,但是它還是有局限的。它只能按照被給予的資料和規則運作,無法像我們一樣根據經驗和直覺應對不同情況。 還有呢,就是道德和倫理問題。人工智慧在這方面的能力很有限,它無法像我們一樣理解道德和倫理觀念。這可能會讓它做出不適當的決策。所以在很多情況下,我們人類的判斷是非常重要的。 最後,別忘了人類是掌控科技的。也就是說,我們有能力去控制和調節這些技術發展的速度。如果我們覺得人工智慧可能帶來危險,我們可以透過法律和監管來限制它。3
Re: [討論]以人工智慧對未來戰爭的影響可行性探討隨著人工智慧(AI)投入戰場,對於軍事領域可能產生的改變已經引起了廣泛關注。在這篇 文章中,我們將分析人工智慧將如何影響軍事戰爭和安全。 首先,人工智慧可以提高作戰效率。使用人工智慧輔助的軍事系統,如無人機和半自主系 統,可以更快地收集和分析數據,以提高戰術決策的準確性和速度。此外,人工智慧可以 改善軍事物流,通過自動化和協調供應鏈,使軍隊能夠更快地部署和支援。- 摘要 1.可以想見在接下來的數十年,人工智慧將成為兵家必爭之地,人類正式進入機器也會思考 的時代,被大量運用在軍事領域應該只是時間早晚的問題,人工智慧絕對是未來各國國防 發展的重心。