PTT推薦

[爆卦] 2024諾貝爾化學獎

看板Gossiping標題[爆卦] 2024諾貝爾化學獎作者
jackliao1990
(j)
時間推噓78 推:85 噓:7 →:46

https://www.nobelprize.org/prizes/chemistry/2024/popular-information/

瑞典皇家科學院決定頒發2024年諾貝爾化學獎

一半給

大衛貝克
1962 年出生於美國華盛頓州西雅圖。 1989年獲得美國加州大學柏克萊分校博士學位。美國華盛頓州西雅圖華盛頓大學教授。

“用於計算蛋白質設計”

另一半

D·哈薩比斯
1976年出生於英國倫敦。 2009年獲得英國倫敦大學學院博士學位。 Google DeepMind
首席執行官,英國倫敦。

約翰·M·JUMPER
1985 年出生於美國阿肯色州小石城。 2017年獲得美國伊利諾州芝加哥大學博士學位。英國倫敦 Google DeepMind 資深研究科學家。

“用於蛋白質結構預測”

化學家長期以來一直夢想著完全理解和掌握生命的化學工具——蛋白質。這個夢想現在已
經觸手可及。 Demis Hassabis 和 John M. Jumper 已成功利用人工智慧來預測幾乎所有已知蛋白質的結構。 大衛貝克 學會如何掌握生命的建造模組並創造全新的蛋白質。他們的發現潛力巨大。

他們透過計算和人工智慧揭示了蛋白質的秘密

生命的旺盛化學反應如何變可能?這個問題的答案就是蛋白質的存在,而蛋白質可謂是絕妙的化學工具。它們通常由20種氨基酸組成,可以以無數種方式組合。以 DNA 中儲存的資訊為藍圖,胺基酸在我們的細胞中連接在一起形成長串。

然後蛋白質的魔力發生了:一串氨基酸扭曲並折疊成一種獨特的——有時是獨特的——三
維結構。這種結構賦予了蛋白質功能。有些成為可以創造肌肉、角或羽毛的化學構件,而有些則可能成為荷爾蒙或抗體。其中許多會形成酶,以驚人的精確度驅動生命的化學反應。位於細胞表面的蛋白質也很重要,它們充當細胞與周圍環境之間的溝通管道。

這 20 種胺基酸是生命的化學組成部分,其潛力怎麼強調都不為過。 2024 年諾貝爾化學獎旨在讓人們在全新的水平上理解和掌握它們。一半的獎金授予 Demis Hassabis 和
John Jumper,他們利用人工智慧成功解決了化學家 50 多年來一直困擾的問題:根據氨基酸序列預測蛋白質的三維結構。這使得他們能夠預測幾乎所有 2 億種已知蛋白質的結構。獎金的另一半則頒給大衛貝克。他開發了電腦化方法來實現許多人認為不可能的事情:創造以前不存在的蛋白質,並且在許多情況下具有全新的功能。

2024 年諾貝爾化學獎表彰了兩項不同的發現,但正如您將看到的,它們密切相關。為了了解今年的獲獎者克服的挑戰,我們必須回顧現代生物化學的黎明。

第一張蛋白質的顆粒狀圖片

化學家自 19 世紀以來就知道蛋白質對於生命過程很重要,但直到 20 世紀 50 年代化學工具才足夠精確,研究人員才開始更詳細地探索蛋白質。劍橋研究人員 John Kendrew
和 Max Perutz 在本世紀末取得了突破性的發現,他們成功地使用一種稱為 X 射線晶體學的方法提出了第一個蛋白質的三維模型。為了表彰這項發現,他們於 1962 年獲得了諾貝爾化學獎。

隨後,研究人員主要使用 X 射線晶體學(通常需要付出巨大的努力)成功產生約 20 萬種不同蛋白質的圖像,這為 2024 年諾貝爾化學獎奠定了基礎。

蛋白質如何找到其獨特的結構?

克里斯蒂安·安芬森 美國科學家 還有一項早期發現。他利用各種化學技巧,成功地使現有的蛋白質展開,然後再次折疊起來。有趣的觀察是蛋白質每次都呈現完全相同的形狀
。 1961年,他得出結論:蛋白質的三維結構完全由蛋白質中的胺基酸序列決定。這使他於 1972 年榮獲諾貝爾化學獎。

然而,安芬森的邏輯包含一個悖論,另一位美國人賽勒斯·萊文塔爾(Cyrus Levinthal)
在1969 年指出。蛋白質至少可以假設10 個氨基酸。 47 不同的三維結構。如果氨基酸鏈隨機折疊,則需要比宇宙年齡更長的時間才能找到正確的蛋白質結構。在細胞中,只需要幾毫秒。那麼這串氨基酸實際上是如何被折疊的呢?

安芬森的發現和萊文塔爾的悖論暗示折疊是一個預定的過程。而且重要的是,有關蛋白質如何折疊的所有資訊都必須存在於氨基酸序列中。

迎接生物化學的巨大挑戰

上述見解導致了另一個決定性的認知——如果化學家知道蛋白質的胺基酸序列,他們應該
能夠預測蛋白質的三維結構。這是一個令人興奮的想法。如果他們成功了,他們將不再需要使用繁瑣的 X 射線晶體學,並且可以節省大量時間。他們還能夠產生 X 射線晶體學不適用的所有蛋白質的結構。

這些合乎邏輯的結論向生物化學面臨的巨大挑戰提出了挑戰:預測問題。為了鼓勵該領域更快速的發展,研究人員於 1994 年啟動了一個名為「 蛋白質結構預測批判性評估」
(CASP) 的項目,該項目後來發展成為一項競賽。每隔一年,來自世界各地的研究人員就可以獲得結構剛剛確定的蛋白質中的胺基酸序列。然而,這些結構對參與者保密。挑戰是根據已知的氨基酸序列預測蛋白質結構。

CASP 吸引了許多研究人員,但事實證明解決預測問題極為困難。研究人員在競賽中輸入的預測與實際結構之間的一致性幾乎沒有任何改善。這一突破直到 2018 年才出現,當時一位國際象棋大師、神經科學專家和人工智慧先驅進入了這個領域。

桌遊高手進入蛋白質奧林匹克

讓我們快速了解 Demis Hassabis 的背景:他四歲開始下棋,13 歲達到大師水平。在他十幾歲的時候,他開始了程式設計師和成功的遊戲開發人員的職業生涯。他開始探索人工智慧並研究神經科學,並取得了多項革命性的發現。他利用自己對大腦的了解為人工智慧開發了更好的神經網路。 2010 年,他與他人共同創立了 DeepMind 公司,該公司為流行的棋盤遊戲開發精湛的人工智慧模型。該公司於 2014 年出售給谷歌,兩年後,當該公司實現了當時許多人認為的人工智慧聖杯:擊敗世界上最古老的棋盤遊戲之一圍棋的冠軍選手時,DeepMind 引起了全球關注。

然而,對 Hassabis 來說,Go 並不是目標,而是開發更好的 AI 模型的手段。這場勝利之後,他的團隊已經準備好解決對人類更重要的問題,因此在 2018 年,他報名參加了第十三屆 CASP 競賽。

Demis Hassabis 的人工智慧模型意外獲勝

前幾年,研究人員預測的 CASP 蛋白質結構的準確度最多只有 40%。借助 AI 模型
AlphaFold,Hassabis 的團隊達到了近 60%。他們贏了,優異的成績讓很多人都大吃一驚——這是意想不到的進步,但解決方案仍然不夠好。為了獲得成功,與目標結構相比,預
測的準確度必須達到 90%。

哈薩比斯和他的團隊繼續開發 AlphaFold——但是,無論他們如何努力,演算法從未完全
成功。殘酷的事實是,他們已經走進了死胡同。團隊很疲憊,但一位相對較新的員工對如何改進人工智慧模型有決定性的想法:約翰詹珀 (John Jumper)。

約翰詹珀接受了生物化學的巨大挑戰

約翰·詹珀對宇宙的迷戀促使他開始學習物理和數學。然而2008年當他開始在一家使用超級電腦模擬蛋白質及其動力學的公司工作時,他意識到物理知識可以幫助解決醫學問題。

2011 年,當詹珀開始攻讀理論物理學博士學位時,他對蛋白質產生了新的興趣。為了節省電腦容量(大學裡緊缺的東西),他開始開發更簡單、更巧妙的方法來模擬蛋白質動力學。很快,他也接受了生物化學這項巨大挑戰的挑戰。 2017 年,當他剛完成博士學位時,他聽到了Google DeepMind 已經開始秘密預測蛋白質結構的傳言。他向他們發送了一份工作申請。他在蛋白質模擬方面的經驗意味著他對如何改善 AlphaFold 有創造性的想法,因此,在團隊開始停滯不前後,他得到了晉升。 Jumper 和 Hassabis 共同領導了從根本上改革人工智慧模型的工作。

改革後的人工智慧模型取得了驚人的結果

新版本——AlphaFold2——是根據Jumper的蛋白質知識來著色的。該團隊也開始使用人工
智慧最近的巨大突破背後的創新:稱為 Transformer 的 神經網路。這些可以比以前更靈活的方式在大量數據中找到模式,並有效地確定應該關注什麼來實現特定目標。

團隊利用所有已知蛋白質結構和胺基酸序列資料庫中的大量資訊對 AlphaFold2 進行了訓練,新的 AI 架構開始及時為第十四屆 CASP 競賽提供良好的結果。

2020 年,當 CASP 的組織者評估結果時,他們明白生物化學長達 50 年的挑戰已經結束。在大多數情況下,AlphaFold2 的表現幾乎與 X 射線晶體學一樣好。

一本關於細胞的教科書讓大衛貝克改變了方向

當大衛貝克開始在哈佛大學學習時,他選擇了哲學和社會科學。然而在演化生物學課程中,他偶然發現了現在經典教科書《細胞分子生物學》 。這導致他改變了人生的方向。他開始探索細胞生物學,最終對蛋白質結構著迷。 1993 年,當他開始擔任西雅圖華盛頓大學的小組組長時,他接受了生物化學領域的巨大挑戰。透過巧妙的實驗,他開始探索蛋白質如何折疊。當他在 20 世紀 90 年代末開始開發可以預測蛋白質結構的電腦軟體:Rosetta時,這為他提供了深刻的見解。

Baker 在 1998 年使用 Rosetta 首次參加 CASP 比賽,與其他參賽者相比,表現非常好。這一成功引發了一個新想法——大衛貝克的團隊可以反向使用該軟體。他們應該能夠輸
入所需的蛋白質結構並獲得有關其氨基酸序列的建議,而不是在 Rosetta 中輸入氨基酸序列並得出蛋白質結構,這將使他們能夠創造出全新的蛋白質。

貝克成為蛋白質構建者

蛋白質設計領域——研究人員創造具有新功能的客製化蛋白質——於 20 世紀 90 年代末
期開始起飛。在許多情況下,研究人員對現有的蛋白質進行了調整,這樣它們就可以做一些事情,例如分解有害物質或充當化學製造業的工具。

然而,天然蛋白質的範圍是有限的。為了增加獲得具有全新功能的蛋白質的潛力,貝克的研究小組希望從頭開始創造它們。正如貝克所說:“如果你想製造一架飛機,你不能從改造一隻鳥開始;相反,你了解空氣動力學的首要原理,並根據這些原理建造飛行器。"

一種獨特的蛋白質重見天日

建構全新蛋白質的領域稱為 從頭 設計。研究小組繪製了一種具有全新結構的蛋白質,然後讓 Rosetta 計算哪種類型的胺基酸序列可以產生所需的蛋白質。為此,Rosetta 搜尋了所有已知蛋白質結構的資料庫,並尋找與所需結構相似的蛋白質短片段。 Rosetta 利用蛋白質能量景觀的基礎知識優化了這些片段並提出了胺基酸序列。

為了研究該軟體的成功程度,貝克的研究小組在產生所需蛋白質的細菌中引入了建議氨基酸序列的基因。然後他們使用 X 射線晶體學確定了蛋白質結構。

事實證明,Rosetta真的可以建造蛋白質。研究人員開發的蛋白質 Top7 幾乎與他們設計的結構完全相同。

貝克實驗室的精彩創作

對於從事蛋白質設計的研究人員來說,Top7 是晴天霹靂。那些以前從頭創造 蛋白質 的人只能模仿現有的結構。 Top7的獨特結構在自然界中並不存在。此外,該蛋白質含有
93 個氨基酸,比以前使用 從頭 設計生產的任何蛋白質都要大。

貝克於 2003 年發表了他的發現。 Baker 實驗室創造的眾多令人驚嘆的蛋白質中的一些。

曾經需要花費數年時間的工作現在只需幾分鐘

當 Demis Hassabis 和 John Jumper 確認 AlphaFold2 確實有效後,他們計算了所有人類蛋白質的結構。然後,他們預測了研究人員迄今為止在繪製地球生物圖時發現的幾乎所有 2 億種蛋白質的結構。

Google DeepMind 也公開了 AlphaFold2 的程式碼,任何人都可以存取它。人工智慧模型已成為研究人員的金礦。截至 2024 年 10 月,AlphaFold2 已被來自 190 個國家的超
過 200 萬人使用。以前,如果有的話,通常需要數年時間才能獲得蛋白質結構。現在只需幾分鐘即可完成。人工智慧模型並不完美,但它估計了其產生的結構的正確性,因此研究人員知道預測的可靠性。

2020 年 CASP 競賽結束後,當 David Baker 意識到基於 Transformer 的 AI 模型的潛力時,他在 Rosetta 中加入了一個模型,這也促進了 從頭 蛋白質的 設計。近年來,貝克實驗室不斷創造出令人難以置信的蛋白質。

令人眼花撩亂的發展,造福人類

蛋白質作為化學工具的驚人多功能性體現在生命的巨大多樣性上。我們現在可以如此輕鬆地想像這些小分子機器的結構,這真是令人難以置信。它使我們能夠更好地了解生命的運作方式,包括為什麼會出現一些疾病、抗生素抗藥性是如何發生的或為什麼一些微生物可以分解塑膠。

創造具有新功能的蛋白質的能力同樣令人震驚。這可以帶來新的奈米材料、標靶藥物、更快速的疫苗開發、最小的感測器和更綠色的化學工業——僅舉幾個為人類帶來最大利益的
應用。

※ PTT 留言評論
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 111.82.233.52 (臺灣)
PTT 網址

KingCherry 10/09 17:48翁啟惠可惜了

KSHLO 10/09 17:48不意外 未來靠AI算了

KingCherry 10/09 17:48明年繼續加油

leoz69927 10/09 17:48跟我想的差不多

KingCherry 10/09 17:48預測幾乎都投他

renna038766 10/09 17:48蛋白質結構?我國中科展的題目而已

kobe9527 10/09 17:48我原本要發表的 被搶先了

Israfil 10/09 17:49每年都說翁啟惠 阿到底哪年要給

observer0117 10/09 17:49David Baker喔

vowpool 10/09 17:49化學不熟

benson502 10/09 17:50數學物理我比較熟,化學是文組

sleeeve 10/09 17:50翁啟惠還差很遠吧,到底是誰ㄧ開始在吹

observer0117 10/09 17:50AI出來就無敵手了,這個獎的價值...

sleeeve 10/09 17:50

syearth 10/09 17:50翁啟惠 被起訴的咖 還想拿獎阿

s505015 10/09 17:50應該快換翁了吧 蛋白質結構得獎了

fraternity 10/09 17:51我就知道,跟我想的一樣

observer0117 10/09 17:51和之前Warshel差不多吧

mirac1e 10/09 17:51青鳥每年吹翁 結果每年都沒有 別再吹了

mirac1e 10/09 17:51諾貝爾奬都被這些白痴吹成奶凍捲了

observer0117 10/09 17:51再兩年就全被AI打趴沒得玩了

KSHLO 10/09 17:52還是有價值阿 因為他們是第一個發現的

KingCherry 10/09 17:52翁也不是台灣在吹 國外也都看好他

sd55524 10/09 17:52Say my name

KSHLO 10/09 17:52AI可以算的比人類快10倍 但不是創新

sleeeve 10/09 17:52這不只學術,還有派系。當年李遠哲是真

sleeeve 10/09 17:52的強,背景也夠硬

observer0117 10/09 17:52諾貝爾獎只頒給活著的人,因為這些

Qaaaa 10/09 17:53對 不是AI出來就沒用 因為AI也需要模型

observer0117 10/09 17:53人未來還有進一步的空間,但現在好

jamesattw 10/09 17:53跟我之前想的一樣

observer0117 10/09 17:53像不是這樣了

wiisonjacky 10/09 17:53嗯嗯 跟我想的差不多

ada741116 10/09 17:53台灣共和國翁先生

AgentSkye56 10/09 17:54跟我想的一樣 我也很看好他

eric112 10/09 17:54我已經在夢中演練過一次了確實是這樣

s81048112 10/09 17:54syearth 都無罪了 還在腿

※ 編輯: jackliao1990 (111.82.233.52 臺灣), 10/09/2024 17:54:57

steward68 10/09 17:55謝謝各位祝福

syearth 10/09 17:56笑死 換個黨執政 檢方就放棄上訴

qweertyui891 10/09 17:56說中文好嗎

TsaiIngWen 10/09 17:56太太太

zsp9081a 10/09 17:56我也是這樣覺得的

KSHLO 10/09 17:57如果能靠運算計算出癌症蛋白 搞不好真得變

KSHLO 10/09 17:57成可控制慢性疾病

arms6806 10/09 17:57翁啟惠賠我醣基

reppoc 10/09 17:58我昨晚也製造了與眾不同的蛋白質了

Tosca 10/09 17:58挖 deepmind的人得諾貝爾獎耶

revise 10/09 17:59嗯嗯 跟我想的差不多

Qaaaa 10/09 18:00不過今年物理跟化學獎都很資訊科學

Transposon 10/09 18:00搞不好ChatGPT可以得文學獎類

KSHLO 10/09 18:00阿未來就是AI天下阿

KSHLO 10/09 18:01算的比我們更快更猛 重點是開發方法

easyfish 10/09 18:01實至名歸!

bye2007 10/09 18:02吹成奶凍捲超哭,笑死

kingofturtle 10/09 18:02為啥這也要扯青鳥

jason0512 10/09 18:03感覺諾貝爾獎的公信力 一年不如一年

milkBK 10/09 18:03恩恩 差不多就這樣

ar0sdtmi 10/09 18:03這會不會變成一種瘋狂朊病毒XD

Lowpapa 10/09 18:04又 又 又 AI

Qaaaa 10/09 18:05不完全公信力下降 而是有時他們給獎很迎合

bla 10/09 18:05與其說公信力變差,倒不如說人類這些年基礎

bla 10/09 18:05科學發展遇到瓶頸了

Qaaaa 10/09 18:05潮流 前幾年的rna疫苗就是

wulaw5566 10/09 18:07越來越醫學獎了

xfaw4d35t 10/09 18:09不會用AI的以後沒奶凍卷吃了

joverKJ 10/09 18:09感覺經濟獎也會類似AI的

Car1osCorrea 10/09 18:09理論計算出頭天

protonck 10/09 18:10David Baker這三年平均一年發6篇以上的N

protonck 10/09 18:10CS 超鬼

z842657913 10/09 18:11跟我想的一樣 被搶先發表了 可惜

ice76824 10/09 18:13摁摁 跟我想的一樣

searchroy 10/09 18:15生化去佔醫學獎的缺好嗎!

nothing188 10/09 18:17何大一應該很賭爛

searchroy 10/09 18:17翁淌政治混水,不會給獎的。

picacuo 10/09 18:18翁啟惠加油啊

kotorichan 10/09 18:20越來越隨便了

choco7 10/09 18:21這是計算化學領域啊

observer0117 10/09 18:38所以今年的是妥協的結果啊,給了

observer0117 10/09 18:39deepmind,因為上次比賽無敵手了

observer0117 10/09 18:39和圍棋一樣,人類根本不是AI的對手

observer0117 10/09 18:40今年David Baker還能分一半,再過幾

observer0117 10/09 18:40年,人類在計算生物學方面的建樹

k1025hung 10/09 18:40化學獎感覺好生物醫學

observer0117 10/09 18:41在AI面前恐怕都不值一提了

fir191938 10/09 18:41我看過了 還好而已

observer0117 10/09 18:42其實沒有生物醫學,蛋白質就是比較

※ 編輯: jackliao1990 (111.253.128.76 臺灣), 10/09/2024 19:03:36

observer0117 10/09 18:42大的化學反應形成的分子

observer0117 10/09 18:43諾貝爾的醫學獎其實生理部分佔很大

calvin0319 10/09 18:58嗯嗯 跟我想的一樣

hexokinase 10/09 19:02蛋白質很大一部分功能就是體內化學反

hexokinase 10/09 19:02

hexokinase 10/09 19:05所以光是能算出結構 化學家就能做很

hexokinase 10/09 19:05多事

powernba 10/09 19:11上次理論計算得獎好像是2013年

fuhoho 10/09 19:12理論物理、理論化學可以蛋雕了

aaa5118 10/09 19:17Alphafold根本超神

Yahweh 10/09 19:27我覺得還好 或許事情可以做的快一點 但是

Yahweh 10/09 19:27辦不到的還是辦不到

Sundance 10/09 19:30今年的物理跟化學獎都跟AI有關

agogoman 10/09 19:37detail

sexybox 10/09 19:52每年都是蛋白 結構

vingfing 10/09 19:53莎賓娜:高端就是蛋白質的兄弟(咦?)

benc8c8c8 10/09 19:57懂了

shala 10/09 20:08以後AI機器人直接得奬也不意外

ripmelo 10/09 20:26博客來停車位又-1了

g70245 10/09 20:54

colorsnows 10/09 20:59

DarkerDuck 10/09 21:01被AI洗版......

Stella 10/09 21:05物理和化學獎都是AI...

galwaydog 10/09 21:08我也這麼覺得

chrisdddd 10/09 21:19台灣的健身教練也可以得吧 每個都

chrisdddd 10/09 21:19超了解蛋白質 都可以跟營養師對著

chrisdddd 10/09 21:19幹了

chiahsun 10/09 21:25晚安

luismars 10/09 22:01大衛貝克漢真的厲害,耐操體能好傳球神準

cloudfoam 10/09 22:03噗要抄我的專題。。

Khandraa 10/09 22:22OK 歐印台積電

winniedadu 10/09 22:23推推希望蛋白質相關的罕病也能有突破

lgcwow 10/09 22:24真假

AirLee 10/09 22:26鋼鐵人的賈維斯終於要變成真的了

myth0422 10/09 22:54代表AI的應用正在重大影響各個領域

NeoLife 10/09 23:11這個發現真的超屌

zxwxz 10/09 23:15未來全部獎項都頒給AI吧!拼研究速度肯定

zxwxz 10/09 23:15輸AI的,還不快趁現在多頒給人類

edwar9154520 10/09 23:37嗯嗯 跟我想的差不多

Forcast 10/09 23:44又是欸挨

Kazetachinu 10/10 00:10ai或成最大贏家

leotimjack 10/10 01:05跟我想的差不多,蛋白質就是要這樣預

leotimjack 10/10 01:06

gigtimeing 10/10 01:08癌細胞凋亡蛋白酶藥 DNA端粒消化抑制

gigtimeing 10/10 01:10酶 模擬序列投入原料製造產品3D列印

mio8390 10/10 01:12軟體工程師都可以得諾貝爾化學獎的年代

benson1212 10/10 01:55怎麼又是AI 評審太愛趕流行了吧...

benson1212 10/10 02:05不過這個蛋白質預測確實非常有突破性

wanters 10/10 08:33以後不出個諾貝爾AI獎嗎?

a104018 10/10 08:55還剩幾集開始惡靈古堡

rbgspydm 10/10 08:59AlphaFold出到3了, CASP大概不用比了

TZUYIC 10/11 17:49很厲害,可以幾乎正確的預測蛋白質結構。