[爆卦] 2024諾貝爾化學獎
https://www.nobelprize.org/prizes/chemistry/2024/popular-information/
瑞典皇家科學院決定頒發2024年諾貝爾化學獎
一半給
大衛貝克
1962 年出生於美國華盛頓州西雅圖。 1989年獲得美國加州大學柏克萊分校博士學位。美國華盛頓州西雅圖華盛頓大學教授。
“用於計算蛋白質設計”
另一半
D·哈薩比斯
1976年出生於英國倫敦。 2009年獲得英國倫敦大學學院博士學位。 Google DeepMind
首席執行官,英國倫敦。
約翰·M·JUMPER
1985 年出生於美國阿肯色州小石城。 2017年獲得美國伊利諾州芝加哥大學博士學位。英國倫敦 Google DeepMind 資深研究科學家。
“用於蛋白質結構預測”
化學家長期以來一直夢想著完全理解和掌握生命的化學工具——蛋白質。這個夢想現在已
經觸手可及。 Demis Hassabis 和 John M. Jumper 已成功利用人工智慧來預測幾乎所有已知蛋白質的結構。 大衛貝克 學會如何掌握生命的建造模組並創造全新的蛋白質。他們的發現潛力巨大。
他們透過計算和人工智慧揭示了蛋白質的秘密
生命的旺盛化學反應如何變可能?這個問題的答案就是蛋白質的存在,而蛋白質可謂是絕妙的化學工具。它們通常由20種氨基酸組成,可以以無數種方式組合。以 DNA 中儲存的資訊為藍圖,胺基酸在我們的細胞中連接在一起形成長串。
然後蛋白質的魔力發生了:一串氨基酸扭曲並折疊成一種獨特的——有時是獨特的——三
維結構。這種結構賦予了蛋白質功能。有些成為可以創造肌肉、角或羽毛的化學構件,而有些則可能成為荷爾蒙或抗體。其中許多會形成酶,以驚人的精確度驅動生命的化學反應。位於細胞表面的蛋白質也很重要,它們充當細胞與周圍環境之間的溝通管道。
這 20 種胺基酸是生命的化學組成部分,其潛力怎麼強調都不為過。 2024 年諾貝爾化學獎旨在讓人們在全新的水平上理解和掌握它們。一半的獎金授予 Demis Hassabis 和
John Jumper,他們利用人工智慧成功解決了化學家 50 多年來一直困擾的問題:根據氨基酸序列預測蛋白質的三維結構。這使得他們能夠預測幾乎所有 2 億種已知蛋白質的結構。獎金的另一半則頒給大衛貝克。他開發了電腦化方法來實現許多人認為不可能的事情:創造以前不存在的蛋白質,並且在許多情況下具有全新的功能。
2024 年諾貝爾化學獎表彰了兩項不同的發現,但正如您將看到的,它們密切相關。為了了解今年的獲獎者克服的挑戰,我們必須回顧現代生物化學的黎明。
第一張蛋白質的顆粒狀圖片
化學家自 19 世紀以來就知道蛋白質對於生命過程很重要,但直到 20 世紀 50 年代化學工具才足夠精確,研究人員才開始更詳細地探索蛋白質。劍橋研究人員 John Kendrew
和 Max Perutz 在本世紀末取得了突破性的發現,他們成功地使用一種稱為 X 射線晶體學的方法提出了第一個蛋白質的三維模型。為了表彰這項發現,他們於 1962 年獲得了諾貝爾化學獎。
隨後,研究人員主要使用 X 射線晶體學(通常需要付出巨大的努力)成功產生約 20 萬種不同蛋白質的圖像,這為 2024 年諾貝爾化學獎奠定了基礎。
蛋白質如何找到其獨特的結構?
克里斯蒂安·安芬森 美國科學家 還有一項早期發現。他利用各種化學技巧,成功地使現有的蛋白質展開,然後再次折疊起來。有趣的觀察是蛋白質每次都呈現完全相同的形狀
。 1961年,他得出結論:蛋白質的三維結構完全由蛋白質中的胺基酸序列決定。這使他於 1972 年榮獲諾貝爾化學獎。
然而,安芬森的邏輯包含一個悖論,另一位美國人賽勒斯·萊文塔爾(Cyrus Levinthal)
在1969 年指出。蛋白質至少可以假設10 個氨基酸。 47 不同的三維結構。如果氨基酸鏈隨機折疊,則需要比宇宙年齡更長的時間才能找到正確的蛋白質結構。在細胞中,只需要幾毫秒。那麼這串氨基酸實際上是如何被折疊的呢?
安芬森的發現和萊文塔爾的悖論暗示折疊是一個預定的過程。而且重要的是,有關蛋白質如何折疊的所有資訊都必須存在於氨基酸序列中。
迎接生物化學的巨大挑戰
上述見解導致了另一個決定性的認知——如果化學家知道蛋白質的胺基酸序列,他們應該
能夠預測蛋白質的三維結構。這是一個令人興奮的想法。如果他們成功了,他們將不再需要使用繁瑣的 X 射線晶體學,並且可以節省大量時間。他們還能夠產生 X 射線晶體學不適用的所有蛋白質的結構。
這些合乎邏輯的結論向生物化學面臨的巨大挑戰提出了挑戰:預測問題。為了鼓勵該領域更快速的發展,研究人員於 1994 年啟動了一個名為「 蛋白質結構預測批判性評估」
(CASP) 的項目,該項目後來發展成為一項競賽。每隔一年,來自世界各地的研究人員就可以獲得結構剛剛確定的蛋白質中的胺基酸序列。然而,這些結構對參與者保密。挑戰是根據已知的氨基酸序列預測蛋白質結構。
CASP 吸引了許多研究人員,但事實證明解決預測問題極為困難。研究人員在競賽中輸入的預測與實際結構之間的一致性幾乎沒有任何改善。這一突破直到 2018 年才出現,當時一位國際象棋大師、神經科學專家和人工智慧先驅進入了這個領域。
桌遊高手進入蛋白質奧林匹克
讓我們快速了解 Demis Hassabis 的背景:他四歲開始下棋,13 歲達到大師水平。在他十幾歲的時候,他開始了程式設計師和成功的遊戲開發人員的職業生涯。他開始探索人工智慧並研究神經科學,並取得了多項革命性的發現。他利用自己對大腦的了解為人工智慧開發了更好的神經網路。 2010 年,他與他人共同創立了 DeepMind 公司,該公司為流行的棋盤遊戲開發精湛的人工智慧模型。該公司於 2014 年出售給谷歌,兩年後,當該公司實現了當時許多人認為的人工智慧聖杯:擊敗世界上最古老的棋盤遊戲之一圍棋的冠軍選手時,DeepMind 引起了全球關注。
然而,對 Hassabis 來說,Go 並不是目標,而是開發更好的 AI 模型的手段。這場勝利之後,他的團隊已經準備好解決對人類更重要的問題,因此在 2018 年,他報名參加了第十三屆 CASP 競賽。
Demis Hassabis 的人工智慧模型意外獲勝
前幾年,研究人員預測的 CASP 蛋白質結構的準確度最多只有 40%。借助 AI 模型
AlphaFold,Hassabis 的團隊達到了近 60%。他們贏了,優異的成績讓很多人都大吃一驚——這是意想不到的進步,但解決方案仍然不夠好。為了獲得成功,與目標結構相比,預
測的準確度必須達到 90%。
哈薩比斯和他的團隊繼續開發 AlphaFold——但是,無論他們如何努力,演算法從未完全
成功。殘酷的事實是,他們已經走進了死胡同。團隊很疲憊,但一位相對較新的員工對如何改進人工智慧模型有決定性的想法:約翰詹珀 (John Jumper)。
約翰詹珀接受了生物化學的巨大挑戰
約翰·詹珀對宇宙的迷戀促使他開始學習物理和數學。然而2008年當他開始在一家使用超級電腦模擬蛋白質及其動力學的公司工作時,他意識到物理知識可以幫助解決醫學問題。
2011 年,當詹珀開始攻讀理論物理學博士學位時,他對蛋白質產生了新的興趣。為了節省電腦容量(大學裡緊缺的東西),他開始開發更簡單、更巧妙的方法來模擬蛋白質動力學。很快,他也接受了生物化學這項巨大挑戰的挑戰。 2017 年,當他剛完成博士學位時,他聽到了Google DeepMind 已經開始秘密預測蛋白質結構的傳言。他向他們發送了一份工作申請。他在蛋白質模擬方面的經驗意味著他對如何改善 AlphaFold 有創造性的想法,因此,在團隊開始停滯不前後,他得到了晉升。 Jumper 和 Hassabis 共同領導了從根本上改革人工智慧模型的工作。
改革後的人工智慧模型取得了驚人的結果
新版本——AlphaFold2——是根據Jumper的蛋白質知識來著色的。該團隊也開始使用人工
智慧最近的巨大突破背後的創新:稱為 Transformer 的 神經網路。這些可以比以前更靈活的方式在大量數據中找到模式,並有效地確定應該關注什麼來實現特定目標。
團隊利用所有已知蛋白質結構和胺基酸序列資料庫中的大量資訊對 AlphaFold2 進行了訓練,新的 AI 架構開始及時為第十四屆 CASP 競賽提供良好的結果。
2020 年,當 CASP 的組織者評估結果時,他們明白生物化學長達 50 年的挑戰已經結束。在大多數情況下,AlphaFold2 的表現幾乎與 X 射線晶體學一樣好。
一本關於細胞的教科書讓大衛貝克改變了方向
當大衛貝克開始在哈佛大學學習時,他選擇了哲學和社會科學。然而在演化生物學課程中,他偶然發現了現在經典教科書《細胞分子生物學》 。這導致他改變了人生的方向。他開始探索細胞生物學,最終對蛋白質結構著迷。 1993 年,當他開始擔任西雅圖華盛頓大學的小組組長時,他接受了生物化學領域的巨大挑戰。透過巧妙的實驗,他開始探索蛋白質如何折疊。當他在 20 世紀 90 年代末開始開發可以預測蛋白質結構的電腦軟體:Rosetta時,這為他提供了深刻的見解。
Baker 在 1998 年使用 Rosetta 首次參加 CASP 比賽,與其他參賽者相比,表現非常好。這一成功引發了一個新想法——大衛貝克的團隊可以反向使用該軟體。他們應該能夠輸
入所需的蛋白質結構並獲得有關其氨基酸序列的建議,而不是在 Rosetta 中輸入氨基酸序列並得出蛋白質結構,這將使他們能夠創造出全新的蛋白質。
貝克成為蛋白質構建者
蛋白質設計領域——研究人員創造具有新功能的客製化蛋白質——於 20 世紀 90 年代末
期開始起飛。在許多情況下,研究人員對現有的蛋白質進行了調整,這樣它們就可以做一些事情,例如分解有害物質或充當化學製造業的工具。
然而,天然蛋白質的範圍是有限的。為了增加獲得具有全新功能的蛋白質的潛力,貝克的研究小組希望從頭開始創造它們。正如貝克所說:“如果你想製造一架飛機,你不能從改造一隻鳥開始;相反,你了解空氣動力學的首要原理,並根據這些原理建造飛行器。"
一種獨特的蛋白質重見天日
建構全新蛋白質的領域稱為 從頭 設計。研究小組繪製了一種具有全新結構的蛋白質,然後讓 Rosetta 計算哪種類型的胺基酸序列可以產生所需的蛋白質。為此,Rosetta 搜尋了所有已知蛋白質結構的資料庫,並尋找與所需結構相似的蛋白質短片段。 Rosetta 利用蛋白質能量景觀的基礎知識優化了這些片段並提出了胺基酸序列。
為了研究該軟體的成功程度,貝克的研究小組在產生所需蛋白質的細菌中引入了建議氨基酸序列的基因。然後他們使用 X 射線晶體學確定了蛋白質結構。
事實證明,Rosetta真的可以建造蛋白質。研究人員開發的蛋白質 Top7 幾乎與他們設計的結構完全相同。
貝克實驗室的精彩創作
對於從事蛋白質設計的研究人員來說,Top7 是晴天霹靂。那些以前從頭創造 蛋白質 的人只能模仿現有的結構。 Top7的獨特結構在自然界中並不存在。此外,該蛋白質含有
93 個氨基酸,比以前使用 從頭 設計生產的任何蛋白質都要大。
貝克於 2003 年發表了他的發現。 Baker 實驗室創造的眾多令人驚嘆的蛋白質中的一些。
曾經需要花費數年時間的工作現在只需幾分鐘
當 Demis Hassabis 和 John Jumper 確認 AlphaFold2 確實有效後,他們計算了所有人類蛋白質的結構。然後,他們預測了研究人員迄今為止在繪製地球生物圖時發現的幾乎所有 2 億種蛋白質的結構。
Google DeepMind 也公開了 AlphaFold2 的程式碼,任何人都可以存取它。人工智慧模型已成為研究人員的金礦。截至 2024 年 10 月,AlphaFold2 已被來自 190 個國家的超
過 200 萬人使用。以前,如果有的話,通常需要數年時間才能獲得蛋白質結構。現在只需幾分鐘即可完成。人工智慧模型並不完美,但它估計了其產生的結構的正確性,因此研究人員知道預測的可靠性。
2020 年 CASP 競賽結束後,當 David Baker 意識到基於 Transformer 的 AI 模型的潛力時,他在 Rosetta 中加入了一個模型,這也促進了 從頭 蛋白質的 設計。近年來,貝克實驗室不斷創造出令人難以置信的蛋白質。
令人眼花撩亂的發展,造福人類
蛋白質作為化學工具的驚人多功能性體現在生命的巨大多樣性上。我們現在可以如此輕鬆地想像這些小分子機器的結構,這真是令人難以置信。它使我們能夠更好地了解生命的運作方式,包括為什麼會出現一些疾病、抗生素抗藥性是如何發生的或為什麼一些微生物可以分解塑膠。
創造具有新功能的蛋白質的能力同樣令人震驚。這可以帶來新的奈米材料、標靶藥物、更快速的疫苗開發、最小的感測器和更綠色的化學工業——僅舉幾個為人類帶來最大利益的
應用。
翁啟惠可惜了
不意外 未來靠AI算了
明年繼續加油
跟我想的差不多
預測幾乎都投他
蛋白質結構?我國中科展的題目而已
我原本要發表的 被搶先了
每年都說翁啟惠 阿到底哪年要給
David Baker喔
化學不熟
數學物理我比較熟,化學是文組
翁啟惠還差很遠吧,到底是誰ㄧ開始在吹
AI出來就無敵手了,這個獎的價值...
的
翁啟惠 被起訴的咖 還想拿獎阿
應該快換翁了吧 蛋白質結構得獎了
我就知道,跟我想的一樣
和之前Warshel差不多吧
青鳥每年吹翁 結果每年都沒有 別再吹了
諾貝爾奬都被這些白痴吹成奶凍捲了
再兩年就全被AI打趴沒得玩了
還是有價值阿 因為他們是第一個發現的
翁也不是台灣在吹 國外也都看好他
Say my name
AI可以算的比人類快10倍 但不是創新
這不只學術,還有派系。當年李遠哲是真
的強,背景也夠硬
諾貝爾獎只頒給活著的人,因為這些
對 不是AI出來就沒用 因為AI也需要模型
人未來還有進一步的空間,但現在好
跟我之前想的一樣
像不是這樣了
嗯嗯 跟我想的差不多
台灣共和國翁先生
跟我想的一樣 我也很看好他
我已經在夢中演練過一次了確實是這樣
syearth 都無罪了 還在腿
謝謝各位祝福
笑死 換個黨執政 檢方就放棄上訴
說中文好嗎
太太太
我也是這樣覺得的
如果能靠運算計算出癌症蛋白 搞不好真得變
成可控制慢性疾病
翁啟惠賠我醣基
我昨晚也製造了與眾不同的蛋白質了
挖 deepmind的人得諾貝爾獎耶
嗯嗯 跟我想的差不多
不過今年物理跟化學獎都很資訊科學
搞不好ChatGPT可以得文學獎類
阿未來就是AI天下阿
算的比我們更快更猛 重點是開發方法
實至名歸!
吹成奶凍捲超哭,笑死
為啥這也要扯青鳥
感覺諾貝爾獎的公信力 一年不如一年
恩恩 差不多就這樣
這會不會變成一種瘋狂朊病毒XD
又 又 又 AI
不完全公信力下降 而是有時他們給獎很迎合
與其說公信力變差,倒不如說人類這些年基礎
科學發展遇到瓶頸了
潮流 前幾年的rna疫苗就是
越來越醫學獎了
不會用AI的以後沒奶凍卷吃了
感覺經濟獎也會類似AI的
理論計算出頭天
David Baker這三年平均一年發6篇以上的N
CS 超鬼
跟我想的一樣 被搶先發表了 可惜
摁摁 跟我想的一樣
生化去佔醫學獎的缺好嗎!
何大一應該很賭爛
翁淌政治混水,不會給獎的。
翁啟惠加油啊
越來越隨便了
這是計算化學領域啊
所以今年的是妥協的結果啊,給了
deepmind,因為上次比賽無敵手了
和圍棋一樣,人類根本不是AI的對手
今年David Baker還能分一半,再過幾
年,人類在計算生物學方面的建樹
化學獎感覺好生物醫學
在AI面前恐怕都不值一提了
我看過了 還好而已
其實沒有生物醫學,蛋白質就是比較
大的化學反應形成的分子
諾貝爾的醫學獎其實生理部分佔很大
嗯嗯 跟我想的一樣
蛋白質很大一部分功能就是體內化學反
應
所以光是能算出結構 化學家就能做很
多事
上次理論計算得獎好像是2013年
理論物理、理論化學可以蛋雕了
Alphafold根本超神
我覺得還好 或許事情可以做的快一點 但是
辦不到的還是辦不到
今年的物理跟化學獎都跟AI有關
detail
每年都是蛋白 結構
莎賓娜:高端就是蛋白質的兄弟(咦?)
懂了
以後AI機器人直接得奬也不意外
博客來停車位又-1了
推
推
被AI洗版......
物理和化學獎都是AI...
我也這麼覺得
台灣的健身教練也可以得吧 每個都
超了解蛋白質 都可以跟營養師對著
幹了
晚安
大衛貝克漢真的厲害,耐操體能好傳球神準
噗要抄我的專題。。
OK 歐印台積電
推推希望蛋白質相關的罕病也能有突破
真假
鋼鐵人的賈維斯終於要變成真的了
代表AI的應用正在重大影響各個領域
這個發現真的超屌
未來全部獎項都頒給AI吧!拼研究速度肯定
輸AI的,還不快趁現在多頒給人類
嗯嗯 跟我想的差不多
又是欸挨
ai或成最大贏家
跟我想的差不多,蛋白質就是要這樣預
測
癌細胞凋亡蛋白酶藥 DNA端粒消化抑制
酶 模擬序列投入原料製造產品3D列印
軟體工程師都可以得諾貝爾化學獎的年代
怎麼又是AI 評審太愛趕流行了吧...
不過這個蛋白質預測確實非常有突破性
以後不出個諾貝爾AI獎嗎?
還剩幾集開始惡靈古堡
AlphaFold出到3了, CASP大概不用比了
很厲害,可以幾乎正確的預測蛋白質結構。
爆
[爆卦]AlphaFold預測出地球上幾乎所有生物蛋白質媒體也沒報這個歷史性的時刻 AlphaFold團隊新聞稿 AlphaFold團隊針對這議題的影片22
[問卦] 為什麼諾貝爾化學獎不分有機跟無機兩個化學發展到現代,可被大致分成有機化學跟無機化學兩大類。 為什麼諾貝爾化學獎不分成有機化學獎跟無機化學獎兩個獎項? --13
[問題] 蛋白質應該用體重還是骨骼肌量計算?大家好小弟我不是專業 在網路上都是看到說蛋白質是體重乘以倍數計算 但之前看到有人說蛋白質的量應該用骨骼肌計算而非體重,比較不容易過量。 這樣感覺也蠻合理畢竟體重也包含脂肪、骨頭之類的東西,而蛋白質只是針對骨骼肌。 這樣會不會可以不用吃那麼多蛋白質呢?14
[問卦] AI預測蛋白質結構能幹嘛??有則科技新聞 說AI能夠預測蛋白質結構 請問這能幹嘛?? 能治失智症嗎?..還是癌症?愛滋病?? 還是能長生不老?13
Re: [討論] 陳醫師大戰蒼藍哥??不會啊不少同行嗆衛福布都沒在怕的,真正不能得罪的是健保署 : : 這份報告有多扯,我直接截一張圖 : 圖表顯示台灣19-44歲男性,平均蛋白質攝取量是RDA建議值的171% : 以舊版RDA建議值 0.8g 蛋白質每公斤體重 計算7
[問卦] 若 NOBEL化學獎說萊克多巴胺可吃,你吃嗎?'東西可不可以吃' 應科學公正評斷 諾貝爾化學獎 應該最科學、最公正 如果 諾貝爾化學獎得主公開說:"萊克多巴胺可放心吃" 那 大家會因此放心吃嗎? 怎麼都沒人去問問 諾貝爾化學獎得主 ??5
[問卦] 分子結構生物學的八卦分子結構生物學主要的工作是測定蛋白質的基因序列,基本上前幾年如果能夠測序出一個 重要的蛋白質就可以發一篇高級論文。對於分子生物學的研究,獲得基因序列是起點和基 礎,只有拿到序列才能方便做後面的功能性研究。 谷歌旗下的人工智能公司DeepMind通過深度學習的AI算法開發出了一種蛋白質結構預測程 式AlphaFold,2018年推出後,在當年12月份舉辦的第13屆CASP(英語:Critical4
Re: [問卦] WD40真的神嗎當然神啊 WD40是一種非常常見的蛋白質結構 由數個至數十個Beta-propeller 組成的環形平台狀結構 像這樣X
[討論] 經合組織等預測中國經濟2024繼續領導世界在高盛發布的《2024全球宏觀經濟展望》報告中,其認為主要經濟體將免於經濟衰退,2024年全球GDP增速預計為2.6%。而對於中國宏觀經濟增長的預測,高盛認為在政策支持、投資升溫、居民消費支出溫和增長的背景下,預計2024年中國實際GDP增速為4.8%,高於國際貨幣基金組織(IMF)給出的4.6%的預測值。 中國將繼續用1/3的世界工業產能,推動世界更多的地區工業化,享受現代生活的好處 中國世界是世界和平和發展的堅定基石,相比較那個封鎖、制裁爲自己拼命續命的衰落帝國 新年新氣象,新希望看中國 --- 沒有這回事吧=.= 以前要做蛋白質解構 要做結晶養晶來解構 花很多時間來做前製備 現在就很多蛋白質結構預測的軟體
爆
[問卦] 謝怡容被罵到自殺 你真的ok?爆
[問卦] 誒遺書不是給家屬的?檢調憑啥扣留?爆
Re: [新聞] 逼死職員內幕!被許銘春一手拔擢 謝宜容爆
[問卦] 欸欸從何時開始認錯道歉改過變得這麼難了爆
[問卦] 靠!所以台灣人在天安門被抓是假的?爆
[問卦] 希特勒搞屠殺也是立意良善嗎?爆
[問卦] 公務員花12年升到簡任很厲害嗎91
[問卦] 謝宜容接下會高升到哪個位置?78
[爆卦] 地震爆
[爆卦] 何佩珊:謝宜容並沒有直接霸凌死者63
[問卦] 謝宜容的小孩現在在想什麼?67
[問卦] 這次treads上的青鳥怎麼那麼安靜爆
[問卦] 從11職等降為10職等 就是嚴懲喔O_o爆
[問卦] 台灣價值徹底崩壞的八卦爆
[問卦] 抽獎、空污、綠鬣蜥、霸凌,還有什麼?52
[問卦] 一句話講出8+9的口頭禪41
[問卦] 為什麼這次炒得起來?43
[問卦] 228誤殺民眾也只是立意良善吧?41
[問卦] 調離主管職位是什麼意思呢?!21
[問卦] 工作能逼死人? 大可以離職就好33
Re: [新聞] 調查稱謝宜容「目的良善」引眾怒 勞長26
[問卦] 欸!?健保是放棄年輕人了嗎?36
[爆卦] 立法院防治職場霸凌專報猛烈質詢勞動部長34
[問卦] 為什麼叔伯輩小時候玩遊戲啃得下外語?77
Re: [新聞] 「我當然敢辦她」!勞長何佩珊承諾本周31
[問卦] 遺書也要被國防布了嗎?28
[問卦] 這次已經確定八又翻了對吧33
[問卦] 淘寶雙11下單收到貨了ㄇO_o26
[問卦] 演都不想演 連戰犯都沒有 等風頭過31
[問卦] 謝宜容老公做iPhone手機殼財力雄厚?