PTT推薦

Re: [討論] 假設勢利的台女有95%

看板Boy-Girl標題Re: [討論] 假設勢利的台女有95%作者
smallworld
(腸門有稀)
時間推噓 9 推:9 噓:0 →:15

不才忝為四大資工金融雙碩 現在當自宅資料工程師

大概糾正一些錯誤

※ 引述《safelove (安全的愛)》之銘言:
: 統計學來說,
: 常常用5%當作「顯著差異」的分界,
: 也就是所謂的特例。

5% 1% 也好 這邊你指的應該是指significance level

他是指你透過收集資料跟統計後

拒絕null pypothesis 但其實他是被冤枉的的機率 (type I error)

所以是不是特例其實一點關係也沒有 跟你資料來源以及數量比較有關係

: 因此就算台女真的普遍勢利,
: 那我們最多也只能說,勢利的台女有95%,
: 要留個5%當作特例。
: 再來我也很願意假設,
: 男生今天感情受挫,找不到人愛他,
: 都是那95%台女的問題。
: 假如有幸,讓男生遇到那5%的台女,
: 那麼肯定能被愛、被欣賞,
: 找到屬於自己的幸福。
: 接下來就是簡單的數學計算了~

這邊的問題在於 環境造成自我對環境的認知是因人而異的

即便女性群體都一樣 新莊吳彥祖跟北投酸肥宅

嘗試與這些女性交往 得到的結果可能不一樣

酸肥宅在不停挫折的過程中 對女人的印象也會一直改變(惡化)

在機器學習中 對於這種從無知到理解環境的學習可以用貝氏推論來做

最簡略的就是用二項式分配的likelihood function加上與其共軛的beta distributton

當prior

TL;DR

結論就是你所認知的世界裡面 你"覺得"會碰上渣女的參數(機率)

是會隨著你碰上渣女的次數而漸漸變大

用白話來說就是一個懵懂少年 被多個渣女毀三觀之後 變成悲憤肥宅的過程

所以說感情路一路順暢的新莊吳彥祖在對女性的認知會比

一路當工具人的北投酸肥宅要樂觀

而這也是比較符合一般人對環境認知並學習的模型

所以以下的乘法甚麼 其實不太有意義 因為他忽略了主體與環境的互動結果

是有根本性的差別的 還有不同品行的女人給你碰到的機會也不是均勻分布的

: ......
: 以此類推,身為一個正常人,
: 要和60個女性有互動應該不難吧?
: 同學、同事、朋友、相親、聯誼、網路、App、別人介紹......
: 隨便湊一湊,應該都很容易超過。
: 那認識60個台女,
: 都不被愛的機率是多少呢?
: 95%^60=4%
: 換句話說,即便勢利的台女高達95%

弱水三千只取一瓢飲 因此應該用幾何分布做模型比較合理 5%碰上愛你的人

那平均也要被甩19次

套用上面貝氏推論 假設從一開始你覺得只有一成渣女 等被現實蹂躪19次之後

在碰到真愛之前你會覺得有20/29的機會碰上渣女 這就是悲憤肥宅的來由

--

※ PTT留言評論
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 119.14.82.57 (臺灣)
PTT 網址

enuj10/30 23:04突然可以理解肥宅的可憐

voncroy10/30 23:10你不就試圖用科學解釋肥宅悲憤仇女很理所當然??

smallworld10/30 23:13不然你也可以引經據典來反駁

tsunade80210/30 23:31怎麼感覺聽起來有點可憐

abbag10/30 23:34越來越多神人出來了(?) m(_ _)m

jupto10/30 23:44這推論很符合現在版上仇女言論的特性啊 但是這也表示現實沒

jupto10/30 23:44仇女男口裡的那麼對他們不友善 而是他們選擇這樣看世界

yueayase10/30 23:46不錯~~ 不錯~~

yueayase10/30 23:48其實若用他的,用poison approximation rate=at

yueayase10/30 23:48a等於單位時間交到女友的數量,每個個體也不一樣

yueayase10/30 23:49P(X>=1) = 1-P(X=0)=1-e^(-at)那同一時間,a小的交到機

yueayase10/30 23:50率算出來也會比a高的還低~~

yueayase10/30 23:50沒辦法,沒女人緣的肥宅rate就低,算出來能交到女友機率

yueayase10/30 23:50也比較低,哭哭~~~

jupto10/30 23:53機率低在人生裡就是要投注更多成本才能獲得的意思 所以肥宅

jupto10/30 23:54還是可以靠努力交到女友啊 就看你要不要而已

jupto10/30 23:55不合算其實就單身就是了 也沒什麼大不了 就不知道有啥好仇

ilap8403210/31 00:09type I error跟資料或母群都沒關係,是研究者自己設定

ilap8403210/31 00:09可以容忍犯錯的機率

smallworld10/31 00:29阿對喔 寫錯了

manuol10/31 01:51趕快推一下以免被人發現我看不懂

ccjj810/31 10:02有意思

suzihciao10/31 11:23正好唸統計覺得實用

mark020410/31 18:25把統計過度延伸去應用到個案,這就是最大錯誤了